Adiabatic coarse-graining and simulations of stochastic biochemical networks.
نویسندگان
چکیده
We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach is similar to the Born-Oppenheimer approximation in quantum mechanics and follows from the stochastic path integral representation of the cumulant generating function of reaction events. In applications with a small number of chemical reactions, it produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, interpretable representation and can be used for high-accuracy, low-complexity coarse-grained numerical simulations. As an example, we derive the coarse-grained description for a chain of biochemical reactions and show that the coarse-grained and the microscopic simulations agree, but the former is 3 orders of magnitude faster.
منابع مشابه
Coarse-graining stochastic biochemical networks: quasi-stationary approximation and fast simulations using a stochastic path integral technique
We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenheimer approximation in quantum mechanics, follows from the stochastic path integral r...
متن کاملEliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch.
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network tha...
متن کاملCoarse-graining Schemes and a Posteriori Error Estimates for Stochastic Lattice Systems
The primary objective of this work is to develop coarse-graining schemes for stochastic many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly c...
متن کاملA comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization.
We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform...
متن کاملFluctuation-preserving coarse graining for biochemical systems.
Finite stochastic Markov models play a major role in modeling biological systems. Such models are a coarse-grained description of the underlying microscopic dynamics and can be considered mesoscopic. The level of coarse-graining is to a certain extent arbitrary since it depends on the resolution of accommodating measurements. Here we present a systematic way to simplify such stochastic descript...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 26 شماره
صفحات -
تاریخ انتشار 2009